metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Christian Slugovc,^a Karl Kirchner^b and Kurt Mereiter^c*

^aInstitute for Chemistry and Technology of Organic Materials (ICTOS), Graz University of Technology, Stremayrgasse 16, A-8010 Graz, Austria, ^bInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and ^cInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, A-1060 Vienna, Austria

Correspondence e-mail: kurt.mereiter@tuwien.ac.at

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.003 Å R factor = 0.025 wR factor = 0.058 Data-to-parameter ratio = 23.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

Chloro(dimethylformamide- κO)(hydridotripyrazolylborato)(tripyrrol-1-ylphosphine- κP)ruthenium(II)

The title compound, $[Ru(C_9H_{10}BN_6)Cl(C_3H_7NO)-(C_{12}H_{12}N_3P)]$, has the Ru atom in octahedral coordination. The Ru-P bond length of 2.2022 (5) Å is some 0.107 Å shorter than that in the corresponding triphenylphosphine complex; this difference is attributable to the electronic donor-acceptor properties of the phosphine ligand.

Comment

Ruthenium(II) hydridotripyrazolylborate complexes, Ru(Tp), are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik *et al.*, 2005*a*,*b*, and references therein). In these complexes, phosphine coligands, such as PPh₃ (triphenylphosphine), PCy₃ (tricyclohexylphosphine) or Ph₂PNHPh (phenylaminodiphenylphosphine), are important as electron σ -donors and π -acceptors, which stabilize the metal centre and influence its reactivity but may also take part in ligand migrations, migratory insertions or C—H activations.

In order to supplement a previous study of [Ru(Tp)Cl-(PPh₃)(DMF)] (DMF is dimethylformamide) (Slugovc et al., 1997), we were interested in the corresponding complex with tri(N-pyrrolyl)phosphine (PPyrl₃) because this coligand, rarely used as yet, is known to be a much weaker σ -donor and a stronger π -acceptor than PPh₃ (Moloy & Petersen, 1995) while being practically isosteric with the latter (Burrows, 2001). Therefore, the title compound, [Ru(Tp)Cl(PPyrl₃)-(DMF)], (I), was synthesized and investigated by X-ray diffraction. In (I), the Ru atom adopts a fairly regular octahedral coordination (Fig. 1 and Table 1) and shows a ligand disposition that is similar to that of [Ru(Tp)Cl(PPh₃)(DMF)], but has a different phosphine group orientation (Fig. 2). The most significant difference in the Ru coordinations of these two compounds is that the Ru-P bond length in (I), 2.2022 (5) Å, is shorter by 0.107 Å than that in [Ru(Tp)Cl- $(PPh_3)(DMF)$, where it is 2.309 (1) Å. This difference agrees qualitatively with the finding on a few other transition metal

Received 15 May 2006 Accepted 16 May 2006

Perspective view of (I), shown with 30% probability displacement

ellipsoids (arbitrary spheres for the H atoms).

Figure 2

Superposition plot of the Ru complexes in (I) (full lines) and [Ru(Tp)Cl(PPh₃)(DMF)] (broken lines; Slugovc et al., 1997). The weighted r.m.s. deviation of the fitted atoms Ru, Cl, P, O, B and N1-N6 is 0.068 Å.

complexes, for which pairs of PPyrl₃- and PPh₃-containing compounds were studied and the metal-P bonds to PPyrl₃ were systematically shorter by 0.05–0.10 Å (Moloy & Petersen, 1995; Huang et al., 1998; Trzeciak et al., 1997). The PPvrl₃ ligand in (I) exerts a notable *trans* influence, which causes the Ru–N4 bond to be 0.067 Å longer than the mean of the Ru-N2 and Ru-N6 bond lengths (Table 1). The corresponding *trans* influence in [Ru(Tp)Cl(PPh₃)(DMF)] results in a bond-length difference of 0.087 Å. Fig. 2 demonstrates that the phosphines in (I) and [Ru(Tp)Cl(PPh₃)-(DMF)] both adopt propeller conformations (Burrows, 2001) but do this in a reversed sense and with differing orientations of the propeller arms. This feature is connected with the crystal packing as the two compounds are clearly not isostructural { $[Ru(Tp)Cl(PPh_3)(DMF)]$: monoclinic, $P2_1/c$, a =9.929 Å, b = 15.293 Å, c = 20.129 Å, $\beta = 94.33^{\circ}$, V = 3048 Å³}. Coherence in both crystal structures is essentially provided by numerous intermolecular C-H··· π interactions, whereas π - π stacking is absent.

Experimental

Compound (I) was synthesized from [RuTpCl(COD)] (COD is cycloocta-1,5-diene) (Gemel et al., 1996). A suspension of [RuTpCl-(COD)] (140 mg, 0.306 mmol) in dimethylformamide (4 ml) was treated with PPyrl₃ (70 mg, 0.306 mmol) and the mixture heated under reflux for 1 h, after which the solvent was removed under vacuum. The yellow solid was washed with n-hexane and dried in vacuo (yield 169 mg, 85%). Crystals for X-ray diffraction were obtained by layering a solution in CH₂Cl₂ with diethyl ether.

(

Crystal data	
$[Ru(C_9H_{10}BN_6)Cl-(C_3H_7NO)(C_{12}H_{12}N_3P)]$ $M_r = 651.87$ Monoclinic, $P2_1/n$ a = 10.046 (2) Å b = 22.749 (4) Å c = 12.683 (2) Å $\beta = 96.78$ (1)°	$V = 2878.3 (9) \text{ Å}^{3}$ Z = 4 $D_{x} = 1.504 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 0.73 \text{ mm}^{-1}$ T = 298 (2) K Prism, yellow $0.59 \times 0.38 \times 0.31 \text{ mm}$
Data collection	
Bruker SMART CCD diffractometer ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2003) $T_{min} = 0.641, T_{max} = 0.797$	23769 measured reflections 8277 independent reflections 7117 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 30.1^{\circ}$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.058$ S = 1.06 8277 reflections 355 parameters H-atom parameters constrained	$\begin{split} &w = 1/[\sigma^2(F_{\rm o}^2) + (0.023P)^2 \\ &+ 0.8425P] \\ &where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ SHELXL97} \\ {\rm Extinction \ coefficient: \ 0.00085 \ (15)} \end{split}$

Table 1

Selected geometric parameters (Å, °).

Ru–N2	2.0652 (13)	Ru-Cl	2.4204 (6)
Ru–N4	2.1315 (13)	P-N7	1.7261 (14)
Ru–N6	2.0631 (13)	P-N8	1.7161 (14)
Ru—O	2.1217 (12)	P-N9	1.7188 (14)
Ru-P	2.2022 (5)		
N8-P-N9	98.41 (7)	N8-P-Ru	120.75 (5)
N8-P-N7	97.82 (7)	N9-P-Ru	121.06 (5)
N9-P-N7	98.92 (7)	N7-P-Ru	115.29 (5)

All H atoms were placed in calculated positions (C-H = 0.93-0.96 Å, B-H = 1.10 Å) and thereafter treated as riding. A torsional parameter was refined for each methyl group. The constraints $U_{iso}(H) = 1.2U_{eq}(C_{aryl,formyl},B)$ and $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$ were applied.

metal-organic papers

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*, *SADABS* and *XPREP* in *SHELXTL* (Bruker, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Financial support by the FWF Austrian Science Fund is gratefully acknowledged (project No. P16600-N11).

References

Bruker (2003). *SMART* (Version 5.625), *SAINT* (Version 6.36), *SADABS* (Version 2.10) and *SHELXTL* (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Burrows, A. D. (2001). CrystEngComm, 46, 1-5.

- Gemel, C., Trimmel, G., Slugovc, C., Mereiter, K., Kremel, S., Schmid, R. & Kirchner, K. (1996). Organometallics, 15, 3998–4004.
- Huang, J., Haar, C. M., Nolan, S. P., Marshall, W. J. & Moloy, K. G. (1998). J. Am. Chem. Soc. 120, 7806–7815.
- Moloy, K. G. & Petersen, J. L. (1995). J. Am. Chem. Soc. 117, 7696-7710.
- Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005a). Organometallics, 24, 3561–3575.
- Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005b). J. Organomet. Chem. 690, 5497–5507.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Slugovc, C., Sapunov, V. N., Wiede, P., Mereiter, K., Schmid, R. & Kirchner, K. (1997). J. Chem. Soc. Dalton Trans. pp. 4209–4216.
- Trzeciak, A. M., Glowiak, T., Grzybek, R. & Ziolkowski, J. J. (1997). J. Chem. Soc. Dalton Trans. pp. 1831–1837.